Insect Cells

All OET insect cells are ideal for use with both the flashBAC ${ }^{\text {mM }}$ expression system and our other range of baculovirus products. Standard Sf9 cells are best suited for large scale virus amplification and protein synthesis, whilst Sf21 cells are recommended for titre based plaque assay and observation of virus cytopathic effects. In addition to this, the Super Sf9 cell line is engineered for enhanced gene expression of more challenging proteins, including those with unstable or toxic characteristics.

Sf9 Insect Cells

An introductory guide to using Sf9 insect cells. Full protocols can be downloaded from our Insect Cell Culture User Guide at www.oetltd.com/product-category/insect-cell-culture/.

Product Information

Product	Catalogue Number	Size
Sf9 Insect Cells	600100	$>1 \times 10^{7} \mathrm{cells} / \mathrm{mL}$

Product guarantee: 1 year from the date of purchase, when properly stored and handled.

Overview

Sf9 insect cells have become the workhorse of the baculovirus expression system, being used worldwide for the production of recombinant viruses and protein expression. Sf9 cells are a clonal isolate from Spodoptera frugiperda (Fall armyworm) IPLB-Sf21-AE cells. The Sf9 cells are adapted to serum free suspension culture in ESF $921^{\text {TM }}$ media but are capable of conforming to other suitable media types. The cells can be used for transient or stable expression of recombinant proteins; as monolayers for transfection and production of recombinant baculovirus; or for the propagation of baculovirus stocks. Sf9 insect cells can easily be cultured as monolayer cultures in T-flasks, suspension cultures in shake flasks, or scaled up for use in bioreactors. Like all cells supplied from OET, the Sf9 insect cells are frozen in logarithmic growth with 98% viability. Every batch is measured for growth and viability post recovery from cryopreservation. All master seed banks are tested for sterility and mycoplasma.

The Sf9 insect cells are supplied in $2 \times 1 \mathrm{~mL}$ vial containing $>1 \times 10^{7}$ cells $/ \mathrm{mL}$ and transported on dry ice. If the cells cannot be revived immediately upon receipt, the vials should be stored in liquid nitrogen until required. OET supply two vials per order to ensure a back-up is available in the event of any problems when reviving the first vial of cells. If the cells do not appear to be viable, do not attempt to revive the second vial of cells until you have contact OET for advice.

Required by User:

- Insect cell culture growth media warmed to $\sim 28^{\circ} \mathrm{C}$ (e.g. ESF $921^{\text {TM }}$ [Expression Systems], Sf-900 ${ }^{\text {TM }}$ II [Gibco®]])
- T25 monolayer flasks, vented or non-vented lids
- 125 mL cell culture shake flasks, vented or non-vented lids
- Counting chamber or electronic cell counter
- Incubator at $28^{\circ} \mathrm{C}$ and shaking platform (100-110rpm)
- Water bath at $28-30^{\circ} \mathrm{C}$ containing fresh/clean water

Method:

At OET we recommend initially setting up the cells in an adherent culture and then adapting to suspension culture after two passages. You must use aseptic techniques throughout and work in a class II safety cabinet or tissue culture laminar flow cabinet.

Adherent Culture

1. Defrost the cells rapidly in a $28-30^{\circ} \mathrm{C}$ water bath until just thawed. Decontaminate the outside of the vial by spraying with 70% ethanol before transferring to a sterile 30 mL universal tube containing 10 mL of culture medium. Perform a cell count and record the initial cell viability.
2. Divide the 10 mL between two T 25 flasks to give a final volume of 5 mL in each flask. Transfer the flasks to a $28^{\circ} \mathrm{C}$ static incubator and allow the cells to attach for 45-60 minutes. If using non-vented flasks keep the lids loose to allow for sufficient aeration of the culture.
3. Monitor the cells under the microscope. Live cells will have attached firmly while dead cells will float. Remove the freezing medium and replace with 5 ml of fresh growth medium. If cells have not attached after 1 hour, return to incubate overnight.
4. Continue to incubate the cells until they have reached $>80 \%$ confluency before sub-culturing. Refer to the OET Insect Cell Culture User Guide for advice on the correct confluency for passaging insect cells.
5. Once a confluent monolayer has formed release cells from the flask's surface by tapping the flask sharply against your palm or bench top until $>75 \%$ of the cells have detached. You can also use gentle pipetting. Do not use a cell scraper to dislodge cells. Transfer 2 mL into a new T25 flask containing 3 mL of fresh medium (this will create a second adherent culture) and sub-culture the remaining T25 flasks as described in the OET Insect Cell Culture User Guide.

Suspension Culture

1. To start a suspension culture, release the cells from two T25 monolayer cultures and transfer the entire volume from one flask, and 3 mL from the second flask, to a 125 mL shake flask. Count the cells and dilute with fresh growth media to give a final cell count of 1×10^{6} cells $/ \mathrm{mL}$. The total volume in the flask should be between $15-30 \mathrm{~mL}$. Use the remaining 2 mL in the second T25 flask to continue the cell line as an adherent culture.
2. Incubate both flasks at $28^{\circ} \mathrm{C}$, leaving the 125 mL flask on an orbital shaker platform rotating at $100-110 \mathrm{rpm}$. If using nonvented flasks keep the lids loose to allow for sufficient aeration of the culture.
3. Allow the cells to grow for $3-4$ days. Count the cells from the suspension flask and transfer to a new 125 mL flask the volume of cells necessary to reach a seeding density of 1×10^{6} cells $/ \mathrm{mL}$ in 25 mL .
4. Once a suspension culture has been established and a cell density of $3-6 \times 10^{6}$ cells $/ \mathrm{mL}$ has been reached Sf9 cells are routinely diluted to a density of $0.5 \times 10^{6} \mathrm{cell} / \mathrm{mL}$. It is recommended that suspension cultures are passaged $2-3$ times and are doubling approximately every 24 hours with a viability of $>90 \%$, before used for experimental virus work.

Protocols and advice on topics including cell culture techniques, freezing and thawing cells, adapting cells to new media, and establishing new cell cultures can be downloaded from our Insect Cell Culture User Guide at www.oetltd.com/product-category/insect-cell-culture/ or via our blog oetltd.wordpress.com.

Product Use

Products are for research purposes only. Not for diagnostic or therapeutic use. For applications including the production of proteins for commercial or diagnostic use including clinical/therapeutic use please contact info@oetltd.com.

An introductory guide to using Sf21 insect cells. Full protocols can be downloaded from our Insect Cell Culture User Guide at www.oetltd.com/product-category/insect-cell-culture/.

Product Information

Product	Catalogue Number	Size
Sf21 Insect Cells	600105	$>1 \times 10^{\prime} \mathrm{cells} / \mathrm{mL}$

Kit Contents and Preparation

Item	Composition	Storage
Sf21 Insect Cells	Sf21 insect cells ($>1 \times 10^{7}$ cells $/ \mathrm{mL}$) frozen in 50% fresh serum supplemented medium (TC100 with 10% FBS), 50% conditioned serum supplemented medium (TC100 with 10\% FBS), and Dimethyl Sulfoxide (DMSO) (10\%), 2 x 1 mL vial	Liquid nitrogen, vapour phase

Product guarantee: 1 year from the date of purchase, when properly stored and handled.

Overview

Sf 21 insect cells (IPLB-Sf21-AE) are derived from pupal ovarian tissues of Spodoptera frugiperda (Fall armyworm). The Sf 21 cell line is a suitable host for transient or stable expression of recombinant proteins using baculovirus expression vectors, propagation of baculovirus stocks, and plaque assays to accurately determine virus titre. They are also ideal for monitoring virus cytopathic effects and are more tolerant to sub-optimal growth conditions. Sf21 insect cells are adapted to growth in serum-containing medium such as TC100 supplemented with 10% foetal bovine serum (FBS). They can easily be cultured as monolayer cultures in T-flasks or in stirred culture flasks. Like all cells supplied from OET, the Sf21 insect cells are frozen in logarithmic growth with 98% viability. Every batch is measured for growth and viability post recovery from cryopreservation. All master seed banks are tested for sterility and mycoplasma.

Revival of Sf21 Cells
Updated January 2023

The Sf21 insect cells are supplied in $2 \times 1 \mathrm{~mL}$ vials containing $>1 \times 10^{7}$ cells $/ \mathrm{mL}$ and transported on dry ice. If the cells cannot be revived immediately upon receipt, the vials should be stored in liquid nitrogen until required. OET supply two vials per order to ensure a back-up is available in the event of any problems when reviving the first vial of cells. If the cells do not appear to be viable, do not attempt to revive the second vial of cells until you have contacted OET for advice.

Required by User:

- Insect cell culture growth media warmed to $\sim 28^{\circ} \mathrm{C}$. At OET we recommend using TC100 media supplemented with 10% FBS
- T25 monolayer flasks, vented or non-vented lids
- Stirred culture flasks (e.g. Techne biological stirrers [www.techne.com])
- Counting chamber or electronic cell counter
- Incubator at $28^{\circ} \mathrm{C}$ with magnetic stirrer (60 rpm)
- Water bath at $28-30^{\circ} \mathrm{C}$ containing fresh/clean water

Method:

At OET we recommend initially setting up the cells in an adherent culture and then adapting to suspension culture after two passages. You must use aseptic techniques throughout and work in a class II safety cabinet or tissue culture laminar flow cabinet.

Thawing Cells

1. Defrost the cells rapidly in a $28-30^{\circ} \mathrm{C}$ water bath until just thawed. Decontaminate the outside of the vial by spraying with 70% ethanol before transferring to a sterile 30 mL universal tube containing 9 mL of culture medium. Perform a cell count and record the initial cell viability.
2. Proceed to set up the cells as either an adherent or stirred/suspension culture.

Adherent Culture

1. Divide the 10 mL between two T 25 flasks to give a final volume of 5 mL in each flask. Transfer the flasks to a $28^{\circ} \mathrm{C}$ static incubator and allow the cells to attach for 45-60 minutes. If using non-vented flasks keep the lids loose to allow for sufficient aeration of the culture.
2. Monitor the cells under the microscope. Live cells will have attached firmly while dead cells will float. Remove the freezing medium and replace with 5 mL of fresh growth medium. If cells have not attached after 1 hour, return to incubate overnight.
3. Continue to incubate the cells until they have reached $>80 \%$ confluency before sub-culturing. Refer to the OET Insect Cell Culture User Guide for advice on the correct confluency for passaging insect cells.
4. Once a confluent monolayer has formed release cells from the flask's surface by tapping the flask sharply against your palm until $>75 \%$ of the cells have detached. A cell scraper may be used but this can result in decreased viability. Transfer 2 mL into a new T25 flask containing 3 mL of fresh growth medium (this will create a second adherent culture) and sub-culture the remaining T25 flasks as described in the OET Insect Cell Culture User Guide.

Stirred Culture

1. This is our preferred method for routine culture of $S f 21$ cells. To start a stirred culture, dispense the 10 mL of thawed cells into a stirred culture flask and dilute them to a concentration of at least 0.2×10^{6} cells $/ \mathrm{mL}$. The total volume in the flask should be between $25-50 \mathrm{~mL}$. A reserve adherent culture may also be set up by transferring 5 mL of this stock to a T25 flask as described above.
2. Incubate the flask at $28^{\circ} \mathrm{C}$, stirring at 60 rpm . It is not necessary to remove the diluted DMSO using this method. If using non-vented flasks keep the lids loose to allow for sufficient aeration of the culture.
3. Allow the cells to grow for 3-4 days. After this time the culture should have reached a density of $1-2 \times 10^{6} \mathrm{cells} / \mathrm{mL}$. We do not recommend exceeding this density before passaging.
4. Once a stirred culture has been established and a cell density of $1-2 \times 10^{6}$ cells $/ \mathrm{mL}$ has been reached Sf 21 cells are routinely diluted to a density of $0.2 \times 10^{6} \mathrm{cell} / \mathrm{mL}$. It is recommended that stirred cultures are passaged $2-3$ times and are doubling approximately every 24 hours with a viability of $>90 \%$, before used for experimental virus work. Note that for Sf 21 cells it is acceptable to reuse glass stirred culture flasks following each dilution.

Protocols and advice on topics including cell culture techniques, freezing and thawing cells, adapting cells to new media, and establishing new cell cultures can be downloaded from our Insect Cell Culture User Guide at www.oetltd.com/product-category/insect-cell-culture/ or via our blog oetltd.wordpress.com.

Product Use

Products are for research purposes only. Not for diagnostic or therapeutic use. For applications including the production of proteins for commercial or diagnostic use including clinical/therapeutic use please contact info@oetltd.com.

superSf9 Insect Cells

OXFORD
EXPRESSION
TECHNOLOGIES

An introductory guide to using superSf9 insect cells. Full protocols can be downloaded from our Insect Cell Culture User Guide at www.oetltd.com/product-category/insect-cell-culture/.

Product Information

Product	Catalogue Number	Size
superSf9-1 Insect Cells	600102	$>1 \times 10^{7} \mathrm{cells} / \mathrm{mL}$
superSf9-2 Insect Cells	600103	$>1 \times 10^{7} \mathrm{cells} / \mathrm{mL}$
superSf9-3 Insect Cells	600104	$>1 \times 10^{7} \mathrm{cells} / \mathrm{mL}$

Kit Contents and Preparation

Item	Composition	Storage
superSf9 Insect Cells	superSf9 insect cells ($>1 \times 10^{7}$ cells $/ \mathrm{mL}$) frozen in 50% fresh serum medium $\left(\right.$ Sf-900 $\left.^{\text {TM }} \mathrm{II}\right), 50 \%$ conditioned serum free medium (Sf-900 $\left.{ }^{\text {TM }} \mathrm{II}\right)$, and Dimethyl Sulfoxide (DMSO) to a final concentration of $7.5 \%, 2 \times 1 \mathrm{~mL}$ vial	Liquid nitrogen, vapour phase

Product guarantee: 1 year from the date of purchase, when properly stored and handled.

Overview

superSf9 insect cells are derived from the Spodoptera frugiperda (Sf9) cell line and are genetically engineered for the enhanced expression of a wide range of recombinant proteins, including potentially toxic and unstable protein targets. The superSf9 cells come in three varieties; superSf9-1, superSf9-2 and superSf9-3, with each cell line offering unique benefits to promote maximum recombinant protein production. superSf9 insect cells can easily be cultured as monolayer cultures in T-flasks, suspension cultures in shake flasks, or scaled up for use in bioreactors. Like all cells supplied from OET, the superSf9 insect cells are frozen in logarithmic growth with 98\% viability. Every batch is measured for growth and viability post recovery from cryopreservation. All master seed banks are tested for sterility and mycoplasma.

Product	Optimised For
superSf9-1 Insect Cells	Offer a prolonged expression time following baculovirus infection. This can help to increase the yield of more stable intracellular, membrane and secreted proteins by up to 15-fold, provided that they are not subject to degredation.
superSf9-2 Insect Cells	Offer a very high expression level over a short period of time following baculovirus infection. This can help to increase the yield of proteins that are more prone to degredation or those that can become toxic to cell health and viability.
superSf9-3 Insect Cells	Offer a high general expression for a variety of recombinant proteins. This can help to increase the yield of recombinant proteins with mixed characteristics but also those with unknown toxicity and stability.

The superSf9 insect cells are supplied in $2 \times 1 \mathrm{~mL}$ vial containing $>1 \times 10^{7}$ cells $/ \mathrm{mL}$ and transported on dry ice. If the cells cannot be revived immediately upon receipt, the vials should be stored in liquid nitrogen until required. OET supply two vials per order to ensure a back-up is available in the event of any problems when reviving the first vial of cells. If the cells do not appear to be viable, do not attempt to revive the second vial of cells until you have contact OET for advice.

Required by User:

- Insect cell culture growth media warmed to $\sim 28^{\circ} \mathrm{C}$ (e.g. ESF $921^{\text {™ }}$ [Expression Systems], Sf-900 ${ }^{\text {TM }}$ II [Gibco®])
- T25 monolayer flasks, vented or non-vented lids
- 125 mL cell culture shake flasks, vented or non-vented lids
- Counting chamber or electronic cell counter
- Incubator at $28^{\circ} \mathrm{C}$ and shaking platform (100-110rpm)
- Water bath at $28-30^{\circ} \mathrm{C}$ containing fresh/clean water

At OET we recommend initially setting up the cells in an adherent culture and then adapting to suspension culture after two passages. You must use aseptic techniques throughout and work in a class II safety cabinet or tissue culture laminar flow cabinet.

Adherent Culture

1. Defrost the cells rapidly in a $28-30^{\circ} \mathrm{C}$ water bath until just thawed. Decontaminate the outside of the vial by spraying with 70% ethanol before transferring to a sterile 30 mL universal tube containing 10 mL of culture medium. Perform a cell count and record the initial cell viability.
2. Divide the 10 mL between two T 25 flasks to give a final volume of 5 mL in each flask. Transfer the flasks to a $28^{\circ} \mathrm{C}$ static incubator and allow the cells to attach for 45-60 minutes. If using non-vented flasks keep the lids loose to allow for sufficient aeration of the culture.
3. Monitor the cells under the microscope. Live cells will have attached firmly while dead cells will float. Remove the freezing medium and replace with 5 ml of fresh growth medium. If cells have not attached after 1 hour, return to incubate overnight.
4. Continue to incubate the cells until they have reached $>80 \%$ confluency before sub-culturing. Refer to the OET Insect Cell Culture User Guide for advice on the correct confluency for passaging insect cells.
5. Once a confluent monolayer has formed release cells from the flask's surface by tapping the flask sharply against your palm or bench top until >75\% of the cells have detached. You can also use gentle pipetting. Do not use a cell scraper to dislodge cells. Transfer 2 mL into a new T25 flask containing 3 mL of fresh medium (this will create a second adherent culture) and sub-culture the remaining T25 flasks as described in the OET Insect Cell Culture user guide.

Suspension Culture

1. To start a suspension culture, release the cells from two T25 monolayer cultures and transfer the entire volume from one flask, and 3 mL from the second flask, to a 125 mL shake flask. Count the cells and dilute with fresh growth media to give a final cell count of 1×10^{6} cells $/ \mathrm{mL}$. The total volume in the flask should be between $15-30 \mathrm{~mL}$. Use the remaining 2 mL in the second T25 flask to continue the cell line as an adherent culture.
2. Incubate both flasks at $28^{\circ} \mathrm{C}$, leaving the 125 mL flask on an orbital shaker platform rotating at $100-110 \mathrm{rpm}$. If using non-vented flasks keep the lids loose to allow for sufficient aeration of the culture.
3. Allow the cells to grow for $3-4$ days. Count the cells from the suspension flask and transfer to a new 125 mL flask the volume of cells necessary to reach a seeding density of 1×10^{6} cells $/ \mathrm{mL}$ in 25 mL .
4. Once a suspension culture has been established and a cell density of 5×10^{6} cells $/ \mathrm{mL}$ has been reached Sf9 cells are routinely diluted to a density of $0.5-0.8 \times 10^{6} \mathrm{cell} / \mathrm{mL}$. It is recommended that suspension cultures are passaged $2-3$ times and are doubling approximately every $30-45$ hours with a viability of $>90 \%$, before used for experimental virus work.

Protocols and advice on topics including cell culture techniques, freezing and thawing cells, adapting cells to new media, and establishing new cell cultures can be downloaded from our Insect Cell Culture User Guide at www.oetltd.com/product-category/insect-cell-culture/ or via our blog oetltd.wordpress.com.

Product Use

Products are for research purposes only. Not for diagnostic or therapeutic use. For applications including the production of proteins for commercial or diagnostic use including clinical/therapeutic use please contact info@oetltd.com.

The superSf9 Cell Line ("Product") sold by Oxford Expression Technologies is covered by one or more patents or patent applications owned by the University of Kentucky Lexington which cover components of the Product.
The product is sold by Oxford Expression Technologies to scientists for academic research or one year commercial evaluation only, 5requires the user to obtain a commercial license as detailed below. Before using the Product, please read the terms and conditions set forth below. Your use of the Product shall constitute acknowledgement and acceptance of these terms and conditions. If you do not wish to use the Product pursuant to these terms and conditions, please contact our Technical Service Department to return the unused and unopened Product for full credit.
We grant the purchaser a non-exclusive license to use the enclosed Product for academic research or for commercial evaluation purposes only. The Product is being transferred to you in furtherance of, and reliance on, such license. You may not use the Product, or the materials contained therein, for any Commercial Purpose without a license for such purpose from ParaTechs Corporation who has exclusive licensing rights to the intellectual property and patents associated with the cell line. Inquiries for commercial use should be directed to agoodin@paratechs.com.
Commercial Purpose include any use of Product in a Commercial Product, the manufacture of a Commercial Product, any resale of the Product, any use (other than evaluation) of Product to facilitate or advance research or development of a Commercial Product, and any use (other than evaluation) of the Product to facilitate or advance any research or development program the results of which will be applied to the development of Commercial Products. "Commercial Product" means any product intended for commercial use.
Access to the Product must be limited solely to those officers, employees and students of your entity who need access to perform the aforementioned research or evaluation. Each such officer, employee and student must be informed of these terms and conditions and agree in writing, to be bound by same. You may not distribute the Product to others. You may not transfer modified, altered, or original material from the Product to a third party without written notification to and written approval from Oxford Expression Technologies. US patent 7,842,493

